Home Search Collections Journals About Contact us My IOPscience

The oxygen-isotope effect on the in-plane penetration depth in underdoped $Y_{1-x} Pr_x Ba_2 Cu_3$ O_{7- δ} as revealed by muon-spin rotation

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2003 J. Phys.: Condens. Matter 15 L17 (http://iopscience.iop.org/0953-8984/15/2/103) View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.119 The article was downloaded on 19/05/2010 at 06:26

Please note that terms and conditions apply.

J. Phys.: Condens. Matter 15 (2003) L17-L23

PII: S0953-8984(03)37659-3

LETTER TO THE EDITOR

The oxygen-isotope effect on the in-plane penetration depth in underdoped $Y_{1-x}Pr_xBa_2Cu_3O_{7-\delta}$ as revealed by muon-spin rotation

R Khasanov^{1,2}, A Shengelaya¹, K Conder³, E Morenzoni², I M Savić⁴ and H Keller¹

¹ Physik-Institut der Universität Zürich, CH-8057 Zürich, Switzerland

² Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland

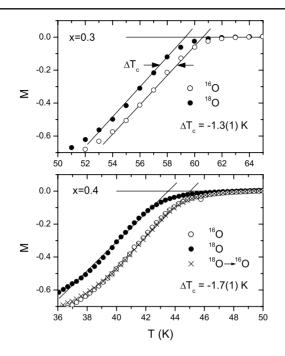
³ Laboratory for Neutron Scattering, ETH Zürich and PSI Villigen,

CH-5232 Villigen PSI, Switzerland

⁴ Faculty of Physics, University of Belgrade, 11001 Belgrade, Yugoslavia

E-mail: rustem.khasanov@psi.ch

Received 5 June 2002 Published 20 December 2002 Online at stacks.iop.org/JPhysCM/15/L17


Abstract

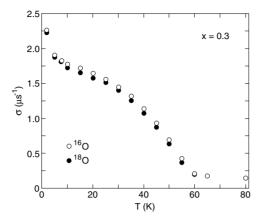
The oxygen-isotope (¹⁶O/¹⁸O) effect (OIE) on the in-plane penetration depth $\lambda_{ab}(0)$ in underdoped $Y_{1-x}Pr_xBa_2Cu_3O_{7-\delta}$ was studied by means of muon-spin rotation. A pronounced OIE on $\lambda_{ab}^{-2}(0)$ was observed with a relative isotope shift of $\Delta \lambda_{ab}^{-2}/\lambda_{ab}^{-2} = -5(2)\%$ for x = 0.3 and -9(2)% for x = 0.4. The OIE exponents of T_c and of $\lambda_{ab}^{-2}(0)$ exhibit a relation that appears to be generic for cuprate superconductors.

The pairing mechanism of high-temperature superconductivity (HTSC) remains elusive in spite of the fact that many models have been proposed since its discovery. A fundamental question is whether lattice effects are relevant for the occurrence of HTSC. In order to clarify this point a large number of isotope effect studies on the superconducting transition temperature T_c have been performed since 1987 [1–10]. It was found that the oxygen-isotope effect (OIE) exponent $\alpha_0 = -d \ln T_c/d \ln M_0$ shows a generic trend for various cuprate families [1, 4– 6, 8–10]: in the underdoped region α_0 is large, even exceeding the conventional BCS value $\alpha = 0.5$, and becomes small in the optimally doped and overdoped regimes. A similar trend was also observed for the copper-isotope exponent α_{Cu} [6, 8, 10].

There is increasing evidence that a strong electron-phonon coupling is present in cuprate superconductors, which may lead to the formation of polarons (bare charge carriers accompanied by local lattice distortions) [11, 12]. One way to test this hypothesis is to demonstrate that the effective mass of the supercarriers m^* depends on the mass M of the lattice atoms. This is in contrast to the case for conventional BCS superconductors, where m^* is independent of M. For cuprate superconductors (the clean limit) the in-plane penetration

0953-8984/03/020017+07\$30.00 © 2003 IOP Publishing Ltd Printed in the UK

Figure 1. A section near T_c of the low-field (1 mT, field-cooled) magnetization curves (normalized to the value at 10 K) for $Y_{1-x}Pr_xBa_2Cu_3O_{7-\delta}$ (x = 0.3 and 0.4).


depth λ_{ab} is given by $\lambda_{ab}^{-2}(0) \propto n_s/m_{ab}^*$, where n_s is the superconducting charge carrier density, and m_{ab}^* is the in-plane effective mass of the superconducting charge carriers. This implies that the OIE on λ_{ab} is due to a shift in n_s and/or m_{ab}^* :

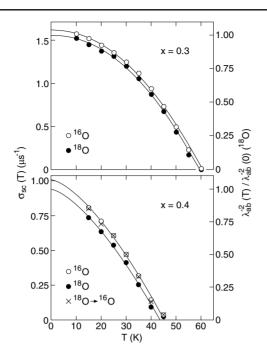
$$\Delta \lambda_{ab}^{-2}(0) / \lambda_{ab}^{-2}(0) = \Delta n_s / n_s - \Delta m_{ab}^* / m_{ab}^*.$$
⁽¹⁾

Therefore a possible mass dependence of m_{ab}^* can be tested by investigating the isotope effect on λ_{ab} , provided that the contribution of n_s to the total isotope shift is known.

Previous OIE studies of the penetration depth in YBa₂Cu₃O_{7- δ} [13], La_{2-x}Sr_xCuO₄ [9, 14, 15], and Bi_{1.6}Pb_{0.4}Sr₂Ca₂Cu₃O_{10+ δ} [16] indeed showed a pronounced oxygen-mass dependence on the supercarrier mass. However, in all these experiments the penetration depth was determined indirectly from the onset of magnetization [13, 16], from the Meissner fraction [9, 14], and from magnetic torque measurements [15]. The muon-spin rotation (μ SR) technique is a direct and accurate method for determining the penetration depth in type II superconductors. In this letter, we report μ SR measurements of the in-plane penetration depth λ_{ab} in underdoped Y_{1-x}Pr_xBa₂Cu₃O_{7- δ} (x = 0.3 and 0.4) with two different oxygen isotopes (¹⁶O and ¹⁸O). A large OIE on λ_{ab} was observed which mainly arises from the oxygen-mass dependence of m_{ab}^* .

Polycrystalline samples of $Y_{1-x}Pr_xBa_2Cu_3O_{7-\delta}$ (x = 0.3 and 0.4) were prepared by standard solid-state reaction [17]. Oxygen-isotope exchange was performed during heating the samples in ¹⁸O₂ gas. In order to ensure that the thermal histories of the substituted (¹⁸O) and unsubstituted (¹⁶O) samples were the same, in all cases two experiments (on ¹⁶O₂ and ¹⁸O₂) were performed simultaneously. The exchange and back-exchange processes were carried out at 600 °C for 25 h, and then the samples were slowly cooled (20 °C h⁻¹) in order to oxidize them completely. The ¹⁸O content in the samples, as determined from a change of the sample weight after the isotope exchange, was found to be 78(2)% for both samples. The total oxygen content

Figure 2. The temperature dependence of the μ SR depolarization rate σ of Y_{1-x}Pr_xBa₂Cu₃O_{7- δ} for x = 0.3, measured in a field of 200 mT (field cooled). The error bars are smaller than the size of the data points.


Table 1. The oxygen content $y = 7 - \delta$ of the $Y_{1-x}Pr_xBa_2Cu_3O_{7-\delta}$ (x = 0.3 and 0.4) samples determined by high-accuracy volumetric analysis.

	¹⁶ O	¹⁸ O	$^{18}\text{O} \rightarrow ^{16}\text{O}$		
			(back-exchange)		
x	у	У	у		
0.3	6.942(2)	6.941(2)			
0.4	6.929(3)	6.934(3)	6.933(3)		

of the samples was determined using high-accuracy volumetric analysis [17]. The ¹⁶O and ¹⁸O samples for x = 0.3 and 0.4 were prepared simultaneously under the same conditions and had within experimental error the same oxygen contents (see table 1). To examine the quality of the samples low-field (1 mT, field cooled), SQUID magnetization measurements were performed (see figure 1). For both concentrations the T_c -onset for the ¹⁶O samples was higher than for ¹⁸O with nearly the same transition width. An oxygen back-exchange of the ¹⁸O sample (x = 0.4) resulted within error in almost the same magnetization curve as for the ¹⁶O sample, confirming that the back-exchange is almost complete. The results on the OIE on T_c are summarized in table 2. Taking into account an isotope exchange of 78%, we find $\alpha_0 = 0.22(4)$ for x = 0.3 and $\alpha_0 = 0.37(5)$ for x = 0.4, in agreement with previous results [5, 18].

The transverse-field μ SR experiments were performed at the Paul Scherrer Institute (PSI), Switzerland, using the π M3 μ SR facility. The samples consisted of sintered pellets (12 mm in diameter, 3 mm thick) which were mounted on a Fe₂O₃ sample holder in order to reduce the background. The polycrystalline Y_{1-x}Pr_xBa₂Cu₃O_{7- δ} samples were cooled from far above T_c in a magnetic field of 200 mT. For a powder sample the magnetic penetration depth λ can be extracted from the muon-spin depolarization rate $\sigma(T) \propto 1/\lambda^2(T)$, which probes the second moment $\langle \Delta B^2 \rangle^{1/2}$ of the probability distribution of the local magnetic field function p(B) in the mixed state [19]. For highly anisotropic layered superconductors (such as the cuprate superconductors), λ is mainly determined by the in-plane penetration depth λ_{ab} [19]: $\sigma(T) \propto 1/\lambda_{ab}^2(T) \propto n_s/m_{ab}^*$.

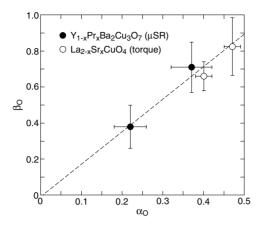
The depolarization rate σ was extracted from the μ SR time spectra using a Gaussian relaxation function $R(t) = \exp[-\sigma^2 t^2/2]$. Figure 2 shows the temperature dependence of the

Figure 3. The temperature dependence of the depolarization rate σ_{sc} in $Y_{1-x}Pr_xBa_2Cu_3O_{7-\delta}$ for x = 0.3 and 0.4 (200 mT, field cooled). On the right-hand axis the normalized in-plane penetration depth $\lambda_{ab}^{-2}(T)/\lambda_{ab}^{-2}(0)(^{18}O)$ is plotted for comparison with [15]. The solid curves correspond to fits to the power law $\sigma_{sc}(T)/\sigma_{sc}(0) = 1 - (T/T_c)^n$. The error bars are smaller than the size of the data points.

measured σ for the Y_{1-x}Pr_xBa₂Cu₃O_{7- δ} samples with x = 0.3. Similar results were obtained for the samples with x = 0.4. It is evident that the values of σ for ¹⁸O are systematically lower than those for ¹⁶O. As expected for a type II superconductor in the mixed state, σ continuously increases below T_c with decreasing temperature [19]. The sharp increase of σ below $\simeq 10$ K is due to antiferromagnetic ordering of the Cu(2) moments [20]. However, zerofield μ SR experiments indicate for both x = 0.3 and 0.4 samples no presence of magnetism above 10 K. Above T_c a small temperature-independent depolarization rate $\sigma_{nm} \simeq 0.15 \,\mu s^{-1}$ is seen, arising from the nuclear magnetic moments [19]. Therefore, the total σ is determined by three contributions: a superconducting (σ_{sc}), an antiferromagnetic (σ_{afm}), and a small nuclear magnetic dipole (σ_{nm}) contribution. Because the contribution σ_{afm} is only present at low temperatures, data points below 10 K were excluded from the analysis. The superconducting contribution σ_{sc} was then determined by subtracting σ_{nm} measured above T_c from σ . In figure 3 we show the temperature dependence of σ_{sc} for the Y_{1-x}Pr_xBa₂Cu₃O_{7- δ} samples with x = 0.3and 0.4. It is evident that for both concentrations a remarkable oxygen-isotope shift of T_c is present, as well as that of σ_{sc} .

The data in figure 3 were fitted to the power law $\sigma_{sc}(T)/\sigma_{sc}(0) = 1 - (T/T_c)^n$ [19] with $\sigma_{sc}(0)$ and *n* as free parameters, and T_c taken from the magnetization measurements (see table 2). The values of $\sigma_{sc}(0)$ obtained from the fits are listed in table 2 and are in agreement with previous results [20]. The exponent *n* was found to be n = 2.0(1) for x = 0.3 and n = 1.5(1) for x = 0.4, which is typical for underdoped YBCO [19]. Moreover, *n* is within error the same for ¹⁶O and ¹⁸O. This implies that σ_{sc} has nearly the same temperature dependence for the two isotopes (see figure 3). In order to prove that the observed OIE on

Table 2. Summary of the OIE results for $Y_{1-x}Pr_xBa_2Cu_3O_{7-\delta}$ extracted from the experimental data (see the text for an explanation).


	¹⁶ O		¹⁸ O				
x	<i>Т</i> _с (К)	$\sigma_{sc}(0) \\ (\mu s^{-1})$	<i>T_c</i> (K)	$\sigma_{sc}(0) \\ (\mu s^{-1})$	α ₀	$\begin{array}{l} \Delta\lambda_{ab}^{-2}(0)/\lambda_{ab}^{-2}(0)\\ (\%)\end{array}$	βο
0.3 0.4 0.4	60.6(1) 45.3(1) 45.1(1) ^a	1.63(2) 1.01(2) 1.01(4) ^a			0.22(4) 0.37(5)	-5(2) -9(2)	0.38(12) 0.71(14)

^a Results for the back-exchange ($^{18}O \rightarrow {}^{16}O$) sample.

 $\lambda_{ab}(0)$ is intrinsic, the ¹⁸O sample with x = 0.4 was back-exchanged (¹⁸O \rightarrow ¹⁶O). As seen in figure 3, the data points for this sample (cross symbols) do indeed coincide with those for the ¹⁶O sample. From the values of $\sigma_{sc}(0)$ listed in table 2, the relative isotope shift of the in-plane penetration depth $\Delta \lambda_{ab}^{-2}(0)/\lambda_{ab}^{-2}(0) = [\sigma_{sc}^{18O}(0) - \sigma_{sc}^{16O}(0)]/\sigma_{sc}^{16O}(0)$ was determined. Taking into account an isotope exchange of 78%, one finds $\Delta \lambda_{ab}^{-2}(0)/\lambda_{ab}^{-2}(0) = -5(2)$ and -9(2)% for x = 0.3 and 0.4, respectively (table 2). For the OIE exponent $\beta_{O} = -d \ln \lambda_{ab}^{-2}(0)/d \ln M_{O}$, one readily obtains $\beta_{O} = 0.38(12)$ for x = 0.3 and $\beta_{O} = 0.71(14)$ for x = 0.4 (table 2). This means that for underdoped $Y_{1-x}Pr_xBa_2Cu_3O_{7-\delta}$ the OIE on λ_{ab}^{-2} , like that on T_c , increases with increasing Pr doping x (decreasing T_c). This finding is in excellent agreement with the recent magnetic torque measurements on underdoped $La_{2-x}Sr_xCuO_4$ [15].

According to equation (1) the observed $\Delta \lambda_{ab}^{-2}(0)/\lambda_{ab}^{-2}(0)$ is due to a shift of n_s and/or m_{ab}^* . For $La_{2-x}Sr_xCuO_4$, several independent experiments [9, 14, 15] have shown that the change of n_s during the exchange procedure is negligibly small. In the present work we provide further evidence: (i) The fully oxygenated $Y_{1-x}Pr_xBa_2Cu_3O_{7-\delta}$ samples ($\delta \simeq 0$) were all prepared under identical conditions, either in a ${}^{16}O_2$ or a ${}^{18}O_2$ atmosphere [17], and the Pr content x did not change. It is very unlikely that n_s changes significantly upon ¹⁸O substitution, and after the back-exchange ($^{18}O \rightarrow {}^{16}O$) the same results are obtained (see figures 1, 3 and table 2). (ii) According to a model [21] that describes the suppression of T_c in $Y_{1-x}Pr_xBa_2Cu_3O_{7-\delta}$, the number of supercarriers decreases linearly with increasing x in the range of 0.05 < x < 0.5, and consequently $\Delta n_s/n_s = -\Delta x/x$. Moreover, for 0.1 < x < 0.5 the transition temperature T_c decreases linearly with x, with $\Delta T_c/\Delta x \simeq -150$ K/Pr atom [5]. Combining these two relations one obtains: $\Delta T_c \simeq -150 x \Delta n_s/n_s$. Assuming that the observed OIE on λ_{ab}^{-2} is due only to a change of n_s ($\Delta m_{ab}^*/m_{ab}^* \simeq 0$), one can estimate the corresponding shift of T_c . For x = 0.3 and 0.4 one finds $\Delta T_c \simeq -1.8(4)$ and -4.2(6) K, respectively. The experimental values, however, are much lower (see figure 1): $\Delta T_c = -1.3(1)$ K (x = 0.3) and $\Delta T_c = -1.7(1)$ K (x = 0.4). We thus conclude that any change in n_s during the exchange procedure must be small, and that the change of λ_{ab} is mainly due to the OIE on the in-plane effective mass m_{ab}^* with $\Delta m_{ab}^*/m_{ab}^* \simeq 5(2)$ and 9(2)% for x = 0.3 and 0.4, respectively. This implies that the effective supercarrier mass m_{ab}^* in this cuprate superconductor depends on the mass of oxygen atoms, which is not expected for a conventional phonon-mediated BCS superconductor. To our knowledge there are only two theoretical models of HTSC which predict an OIE on the effective carrier mass (m^*) , namely, a bipolaronic model of Alexandrov and Mott [11] and a model of nonadiabatic superconductivity proposed by Grimaldi et al [22].

In figure 4 the exponent β_0 versus the exponent α_0 for $Y_{1-x}Pr_xBa_2Cu_3O_{7-\delta}$ is plotted. For comparison we also included the recent magnetic torque results for underdoped $La_{2-x}Sr_xCuO_4$ [15]. It is evident that these exponents are linearly correlated: $\beta_0 = A\alpha_0 + B$. A best fit yields A = 1.8(4) and B = -0.01(12), so $\beta_0 \simeq A\alpha_0$. This empirical relation appears to be generic for cuprate superconductors. One can understand this behaviour in

Figure 4. A plot of the OIE exponent β_0 versus the OIE exponent α_0 for $Y_{1-x}Pr_xBa_2Cu_3O_{7-\delta}$ (x = 0.3 and 0.4) and $La_{2-x}Sr_xCuO_4$ (x = 0.080 and 0.086) from [15]. The dashed line represents a best fit to the empirical relation $\beta_0 = A\alpha_0 + B$.

terms of an empirical relation between T_c and the μ SR depolarization rate $\sigma_{sc}(0)$ [23, 24]. It was shown [24] that for most families of cuprate superconductors the simple parabolic relation $\bar{T}_c = 2\bar{\sigma}(1 - \bar{\sigma}/2)$ describes the experimental data rather well (here $\bar{T}_c = T_c/T_c^m$, $\bar{\sigma} = \sigma_{sc}(0)/\sigma_{sc}^m(0)$, and T_c^m and $\sigma_{sc}^m(0)$ are the transition temperature and the depolarization rate of the optimally doped system). Using this parabolic ansatz, one readily obtains the linear relation between β_0 and α_0 : $\beta_0/\alpha_0 = 1 + 1/2[(1 - (1 - \bar{T}_c)^{1/2})/(1 - \bar{T}_c)^{1/2}]$.

In the heavily underdoped regime $(\bar{T}_c \rightarrow 0)$, $\beta_0/\alpha_0 \rightarrow 1$. For the underdoped samples shown in figure 4 the reduced critical temperature \bar{T}_c is in the range 0.5–0.7, yielding $\beta_0/\alpha_0 = 1.2$ –1.4, in agreement with A = 1.8(4) obtained from the experimental data. Recently, it was pointed out [25] that the unusual doping dependence of the OIE on T_c and on $\lambda_{ab}^{-2}(0)$ naturally follows from the doping-driven 3D–2D crossover and the 2D quantum superconductor-to-insulator transition in the underdoped limit. It is predicted that in the underdoped regime $\beta_0/\alpha_0 \rightarrow 1$, which is consistent with the parabolic ansatz.

In summary, we performed μ SR measurements of the in-plane penetration depth λ_{ab} in underdoped Y_{1-x}Pr_xBa₂Cu₃O_{7- δ} (x = 0.3, 0.4) for samples with two different oxygen isotopes (¹⁶O and¹⁸O). A pronounced OIE on both the transition temperature T_c and $\lambda_{ab}^{-2}(0)$ was observed, which increases with decreasing T_c . The isotope shift of $\lambda_{ab}^{-2}(0)$ is attributed to a shift in the in-plane effective mass m_{ab}^* . For x = 0.3 and 0.4 we find $\Delta m_{ab}^*/m_{ab}^* = 5(2)$ and 9(2)%, respectively. Furthermore, an empirical relation between the OIE exponents β_0 and α_0 was found that appears to be generic for various classes of cuprate superconductors. The OIE on m_{ab}^* implies that the superconducting carriers have polaronic character, and that lattice effects play an essential role in the occurrence of HTSC.

We are grateful to G M Zhao, T Schneider, and K A Müller for many fruitful discussions and to A Amato, U Zimmermann, and D Herlach from PSI for technical support during the μ SR experiments. This work was partly supported by the Swiss National Science Foundation.

References

[1] For a review, see

Franck J P 1994 *Physical Properties of High Temperature Superconductors* vol 4, ed D M Ginsberg (Singapore: World Scientific) pp 189–293

- [2] Batlogg B et al 1987 Phys. Rev. Lett. 58 2333
- [3] Cardona M et al 1988 Solid State Commun. 67 789
- [4] Crawford M K et al 1990 Phys. Rev. B 41 282
- [5] Franck J P et al 1991 Phys. Rev. B 44 5318
- [6] Franck J P et al 1993 Phys. Rev. Lett. 71 283
- [7] Zech D et al 1994 Nature **371** 681
- [8] Zhao G M et al 1996 Phys. Rev. B 54 14956
- [9] Zhao G M et al 1998 J. Phys.: Condens. Matter 10 9055
- [10] Zhao G M et al 2001 J. Phys.: Condens. Matter 13 R569
- [11] Alexandrov A S and Mott N F 1994 Int. J. Mod. Phys. 8 2075
- [12] Müller K A 2000 Physica C 341-348 11
- [13] Zhao G M and Morris D E 1995 Phys. Rev. B 51 16487
- [14] Zhao G M et al 1997 Nature **385** 236
- [15] Hofer J et al 2000 Phys. Rev. Lett. 84 4192
- [16] Zhao G M et al 2001 Phys. Rev. B 63 220506-1
- [17] Conder K 2001 Mater. Sci. Eng. R32 41-102
- [18] Zhao G M et al 1996 Phys. Rev. B 54 14982
- [19] Zimmermann P et al 1995 Phys. Rev. B 52 541
- [20] Seaman C L et al 1990 Phys. Rev. B 42 6801
- [21] Liechtenstein A and Mazin I 1995 Phys. Rev. Lett. 74 1000
- [22] Grimaldi C et al 1998 Europhys. Lett. 42 667
- [23] Uemura Y et al 1989 Phys. Rev. Lett. 62 2317
- [24] Schneider T and Keller H 1992 Phys. Rev. Lett. 69 3374
- [25] Schneider T and Keller H 2001 Phys. Rev. Lett. 86 4899